Novel Frequency Swapping Technique for Conducted Electromagnetic Interference Suppression in Power Converter Applications

نویسندگان

  • Ming-Tse Kuo
  • Ming-Chang Tsou
چکیده

Abstract: Quasi-resonant flyback (QRF) converters have been widely applied as the main circuit topology in power converters because of their low cost and high efficiency. Conventional QRF converters tend to generate higher average conducted electromagnetic interference (EMI) in the low-frequency domain due to the switching noise generated by power switches, resulting in the fact they can exceed the EMI standards of the European Standard 55022 Class-B emission requirements. The presented paper develops a novel frequency swapping control method that spreads spectral energy to reduce the amplitude of sub-harmonics, thereby lowering average conducted EMI in the low-frequency domain. The proposed method is implemented in a control chip, which requires no extra circuit components and adds zero cost. The proposed control method is verified using a 24 W QRF converter. Experimental results reveals that conducted EMI has been reduced by approximately 13.24 dBμV at 498 kHz compared with a control method without the novel frequency swapping technique. Thus, the proposed method can effectively improve the flyback system to easily meet the CISPR 22/EN55022 standards.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and Spectral Characteristics of a Spread-Spectrum Technique for Conducted EMI Suppression

Frequency modulation (FM) and random switching methods have been used for reducing conducted electromagnetic interference (EMI) in power converters. Limited theoretical studies and comparisons of these schemes, however, are available. In this paper, a detailed analysis and the spectral characteristics of a random carrier-frequency (RCF) technique for suppressing conducted EMI in an offline swit...

متن کامل

A comparative study of carrier-frequency modulation techniques for conducted EMI suppression in PWM converters

A rigorous mathematical analysis and a comparative study of carrier-frequency modulation (CFM) techniques for the conducted electromagnetic interference (EMI) suppression in pulsewidth-modulated converters is presented. CFM techniques dither the switching period with a small amplitude variation around the nominal value, so that the harmonic power is redistributed over the spectrum of concern. T...

متن کامل

A Novel Compact Ultra-Wideband Antenna with Single and Double Band Rejection

Band-notch characteristic has been of great interest recently to overcome the electromagnetic interference of Ultra-wideband systems (UWB) with other existing ones. In this paper, we present a novel microstrip-fed antenna with band rejection property appropriate for UWB applications. Band-notch characteristic has been achieved by adding a rectangular resonant element to the ground section. A pr...

متن کامل

EMI Problems associated with DC-DC Converters

This work presents the analysis of radiated EMI problems associated with DC-DC buck converters and the solutions for minimize the reverse recovery of the Drain-Bulk diode of the synchronous switching MOSFET. The DC-DC buck converter topology is used in computers and telecom applications because of its high power efficiency and multiple DC levels. For reducing the reverse recovery and its relate...

متن کامل

Loaded Resonant Converter for the DC to DC Energy Conversion Applications

Among the many advantages that resonant power conversion has over conventionally adopted pulsewidth modulation include a low electromagnetic interference, low switching losses, small volume, and light weight of components due to a high switching frequency, high efficiency, and low reverse recovery losses in diodes owing to a low di/dt at switching instant. This work presents a novel loaded-reso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016